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Entropy versus energy: The phase behavior of a hard-disk mixture
in a periodic external potential
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The phase behavior of a 50% binary hard-disk mixture with diameter ratio o/ 04=0.414, which is exposed
to a one-dimensional periodic potential, is examined via Monte Carlo simulations. We find an induced struc-
tural crossover in the modulated liquid. At higher densities, depending on the strength of the external potential,
the system exhibits a tunable demixing transition, followed by fluid-solid coexistence of an equimolar mixture
with the S;(AB) square lattice. We find a decoupled melting of the sublattices of the S;(AB) lattice. The melting
of the small-component sublattice perpendicular to the external potential minima leads to fissuring in the

large-component sublattice.
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Two-dimensional (2D) systems often differ significantly
in their physical properties and phase transition behavior
from corresponding three-dimensional systems. The need to
understand these differences is obvious in the face of general
minimization trends in physics and technology. In this con-
text, monolayers and their interactions with a substrate have
attracted a lot of interest. But also from a purely theoretical
point of view the ongoing discussion on the nature of freez-
ing and melting in two dimensions (Kosterlitz-Thouless-
Halperin-Nelson-Young scenario [1-3] versus first-order
transition) shows the importance of two-dimensional systems
in general. Colloidal suspensions have proven to be ideal
model systems for studies on such systems, their advantage
being the direct accessibility to real space data via laser scan-
ning microscopy, an excellent control over the colloidal in-
teractions, and the tunability of the substrate potential in its
shape and strength, as it is modeled, e.g., by the interference
pattern of laser beams. Monodisperse 2D colloidal systems
with and without a substrate potential have been studied ex-
tensively in experiments [4—6], computer simulations [7—12],
and theory [13-15] over the last decades. But as in nature
monolayers are often not necessarily monodisperse, our fo-
cus is on the question of how the addition of another length
scale into the system will influence the intricate competition
between adsorbate-adsorbate and adsorbate-substrate interac-
tions. This question is addressed by studying a binary system
under the influence of a 1D spatially periodic substrate po-
tential. A variety of interesting phenomena are discovered
that could be exploited in experimental techniques. The in-
teraction with the substrate will completely change the mis-
cibility of the binary mixture. As the change is induced by
the external field, it is a means to directly control miscibility.
In addition, such a system exhibits a field-induced ordering
transition, which could be exploited for controlled structural
growth. We show that these phenomena are to be found even
in purely repulsive systems such as a 2D hard-disk mixture
by means of Monte Carlo computer simulations. In experi-
ments, sterically stabilized poly(methylmethacrylate)
(PMMA) spheres are often used to model such repulsive par-
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ticle interactions. In an experimental realization, a binary
mixture of sterically stabilized PMMA colloids with the de-
sired ratio of radii and a large difference in polarizabilities
might be exposed to an interference pattern of laser beams.
The polarizability of the larger component should tend to
zero in order to approach the limit of no coupling to the
external potential.

The choice of a purely repulsive interaction allows a di-
rect comparison to the extensive studies on monodisperse
systems in a 1D periodic light field [16]. These show a
highly nontrivial phase behavior as the amplitude of the ex-
ternal field is raised: laser-induced freezing (LIF) [4] and
laser-induced melting (LIM) [5,9]. The occurring stable
phases depend crucially on the given commensurability ratio,
i.e., the ratio of the wave vector of the external field to the
corresponding parallel reciprocal lattice vector.

Employing a 1D spatially periodic external potential
mimics the situation of a stripe patterned substrate. Such
patterns are used as templates in colloidal epitaxy [17] for
growing, e.g., photonic colloidal crystals [18,19]. Structure
formation of monodisperse systems on such patterns has
been investigated e.g., by Harreis et al. [20], who predict a
variety of possible lattice structures depending on the width
and periodicity of the stripes. Nevertheless, for a direct com-
parison with the reentrant LIF and LIM scenarios, we focus
on the effect the periodicity has on the mixture, and set the
external potential V() to
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As for the equimolar binary mixture of interest (diameter
ratio og/0,=0.414), the S,(AB) [21] lattice structure allows
for the densest packing, the periodicity of the potential

N=2m/|K] is chosen to be commensurate to the lattice planes
of the S;(AB) crystal with a commensurability ratio
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with a the lattice parameter of the square lattice. All lengths
are measured in units of oy; therefore the dimensionless
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number density is Q:(N/A)of,. Whether in the field-free
case the S(AB) lattice, which is predicted [21] to exist in
equimolar mixtures for o/ 04 €[0.392,2~1], is a thermo-
dynamic phase is still an open question. Watanabe et al. [22]
observe a metastable state for the closest packing situation
(0g/04=2-1 and 0=2.0). In this light the realization that a
modulation of the dense fluid in 1D will induce an ordering
transition in 2D is important as it opens up a pathway to
grow defect-free square lattice structures. We perform Monte
Carlo simulations in the NVT ensemble (N=1848). In order
to facilitate equilibration we employ, besides the standard
Metropolis Monte Carlo algorithm, an additional nonlocal
cluster move by Lue and Woodcock [23]. Periodic boundary
conditions are employed in all simulations. In contrast to the
studies of monodisperse systems, in the case of a binary
system one has to distinguish three cases: (a) only the
smaller component interacts with the external potential, (b)
both components interact with the external potential, or (c)
only the larger component interacts with the external poten-
tial. This choice has an impact on the occurring underlying
ordering mechanisms. We will concentrate on case (a).

Even in the field-free case, the addition of another length
scale to a 2D system leads to interesting phenomena. As has
been recently observed experimentally [24], introducing
small particles into a system of large particles breaks the
spanning network of large particles. The resulting competi-
tion between free volume and configurational entropy leads
to clustering [25] and structural crossover [24,26]. Neverthe-
less, in a purely repulsive system the effect is too weak to
drive phase separation. The equimolar binary mixture of in-
terest to us (op/ 04,=0.414) belongs to the regime of a span-
ning large-particle network. The dominating wavelength in
the oscillations in the pair correlation function g(r) is there-
fore set by the radius of the large particles. At low strengths
of the external potential, we observe a modulated liquid
phase. There is no spontaneous symmetry breaking, but the
induced symmetry breaking leads to a translational order
with periodicity A in the component interacting with the sub-
strate potential. This is visible in the stripe pattern of the pair
correlation function ggzg(7) [inset in Fig. 1(b)]. In contrast,
the pair correlation function g44(7) shows the characteristic
concentric rings of an isotropic fluid [inset in Fig. 1(a)]. The
system exhibits an induced structural crossover. The wave-
length of the exponentially damped oscillations in the pair
correlation functions changes from approximately o,/2 in
the field-free case to A/2 in the modulated liquid. Figure 1
shows the total correlation functions hgg(r) and hyu(r). It is
remarkable that this crossover occurs also in h,(r), as its
short-range behavior is not affected by the substrate poten-
tial.

The LIF scenario differs from the monodisperse LIF sce-
nario in the fact that there exists a regime of laser-induced
demixing, i.e., the coexistence of a monodisperse lattice of
the larger component with a small-component enriched fluid.
This demixing does not occur in the field-free case. A heu-
ristic argument by Buhot et al. [27] yields a diameter ratio of
opl/o,=1/100 as the upper limit for possible phase separa-
tion in binary hard-disk mixtures. Nevertheless, exposing an
equimolar binary mixture with diameter ratio o/ 0,=0.414
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FIG. 1. (Color online) Comparison of the total pair correlation
functions (a) hy,(7) and (b) hgg(r) for the dimensionless number
density 0=1.6. Insets show the corresponding 2D pair correlation
functions at Vy/kgT=2.1.

to an external field interferes with the competition of free
volume and configurational entropy in a controlled way by
introducing the constraint of energy minimization. Phase
separation is induced. The insets in Fig. 2 show overlays of
the positions of the larger component during a simulation run
(corrected for the motion of the center of mass). The left
inset was taken in the demixing regime. The system mini-
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FIG. 2. (Color online) Probability distribution of the shape fac-
tor { in the demixing regime at V;/kg7T=1.0 and in the coexistence
region at Vy/kpT=2.5 at a dimensionless number density of
©=1.68. The insets show overlays of the positions of the larger
component in the two regimes.
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mizes its energy by aligning the smaller component with the
potential minima. This leads to chain formation of the small
particles in the y direction. By this ordering mechanism the
accessible space for the larger component diminishes. As the
monodisperse triangular lattice yields the highest packing
fraction of the large component, the formation of triangular
lattice droplets is induced. Their orientation with respect to
the external field is arbitrary. Demixing has been observed
for 1.64<p=1.725 and 0.1=V,/kgT=1.5. For higher ex-
ternal field amplitudes, this intricate competition between en-
tropy maximization and energy minimization induces coex-
istence of a commensurate square lattice and a 50% binary
fluid (see right inset Fig. 2). The coexisting lattice is nearly
defect-free. The solid is a “locked floating solid” (LFS) [15],
as it is pinned to the substrate with respect to movement
perpendicular to the potential minima, but can float freely
along them.

The entrance into the coexistence region is visible as a
change in the probability distribution of the shape factor
(=C?/(4mS) (C is the circumference and S the surface area
of the Voronoi cell), which was introduced in [28] for the
detection and characterization of structural changes in hard-
disk fluids. The perfect square lattice has square Voronoi
cells, which yield {=1.273. Fluctuations of the particles
around their equilibrium positions lead to a broad distribu-
tion of irregular hexagons and pentagons as Voronoi cells
with a shape factor close to {=1.273. In the coexistence
regime, this broad peak in the probability distribution of the
shape factor shifts to lower values and the height of the peak
at {=1.273 diminishes (see Fig. 2). In contrast, the demixing
regime can be discerned by a peak at {=1.103 due to the
regular hexagonal Voronoi cells of the triangular lattice
droplet (see Fig. 2).

We also addressed the question of whether a LIM scenario
in analogy to the monodisperse LIM can occur in the binary
system. In the monodisperse LIM scenario, melting at high
external field amplitudes is mediated via a decoupling of the
particle fluctuations in adjacent potential minima. This melt-
ing scenario is geometrically blocked in the analyzed binary
mixture due to the chosen combination of diameter ratio and
wavelength of the external field. Instead, we found a decou-
pled melting of the sublattices or fissuring in which the sub-
lattice of the smaller component melts perpendicular to the
potential minima, while the sublattice of the larger compo-
nent persists. Strong fluctuations along the potential minima
of the larger components enable this mechanism. Character-
istic for the clustering of the smaller component in the fis-
suring regime is the formation of dimer structures, which
align with the minima of the external field (see inset in Fig.
3). In order to quantify this, we adapt the orientational order
parameter used for the analysis of nematic liquid crystals to
our needs. We define

0 for Zz=0,
Sy= 0,)%— 1
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with Np the number of small particles with Zz#0, Zp the
number of small particles within a cutoff radius r.=\ of a
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FIG. 3. (Color online) Probability distribution of the order pa-
rameter Sp at Vy/kgT=20.0. For clarity the plots for the dimension-
less number densities 0=1.77 and 1.76 are shifted. The inset shows
a typical fissure at 0=1.74.

small particle j, and 6 the angle between the connecting
line of the dimer and the orientation of the potential minima.
Detection of small particles within the cutoff radius signifies
the onset of fissuring. Figure 3 shows the probability distri-
butions of Sy for various number densities. At high number
densities, no dimers can form, which leads to a ¢ peak at
Sp=0. At the onset of fissuring, peaks at Sz=-0.5 and/or
Sp=1.0 occur. Dimers in the fissure that are aligned with the
potential troughs yield Szp=1.0, while those perpendicular
(this corresponds to small particles occupying adjacent
minima) yield S5=-0.5. For lower number densities the fis-
sures get broader and other orientations of the dimers occur.
This leads to a broad peak in P(Sg) that converges to a dis-
tribution centered around Sz=0.5 in the modulated liquid
(0=1.51 in Fig. 3).

We define an analogous order parameter S, for the larger
component. The cutoff radius is r.=1.30 and an additional
constraint on the distance |x;;|< 1.3\ is used. The alignment
of the large particles is only indirectly induced through the
interaction with the small particles. At high number densities
the probability distribution P(S,) is strongly peaked close to
1. Its broadening and shift to lower values signifies the en-
trance in the coexisting regime, as the alignment gets par-
tially destroyed as soon as the sublattice of large particles
melts. S4 is therefore used to calculate the upper boundary of
the coexistence region. Its lower boundary can be determined
by studying the probability distributions of the shape factor
£, in which the peak due to the square lattice structure van-
ishes in the modulated liquid. From this analysis we obtain
the phase diagram shown in Fig. 4. It was calculated by
lowering the number density @ and taking a commensurate
path through phase space [i.e., a change in @ is accompanied
by a change in the wavelength of the external field
A=1/(y20)] and also by raising the potential strength V, at
constant number density @. Simulations carried out in an
incommensurate setting, i.e., N is kept constant independent
of the number density @, intersect the phase diagram consis-
tently.

In conclusion, we have shown via Monte Carlo simula-
tions that the miscibility of a binary hard-disk mixture can be
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FIG. 4. (Color online) p-V,, plane of the phase diagram as ob-
tained from the analysis of the order parameters S and S, and the
shape factor {. Lines are a guide to the eye.

tuned in a controlled way by exposing the mixture to a one-
dimensional spatially periodic potential. Weak external fields
induce a phase separation into an ordered monodisperse
phase of the larger component and a disordered fluid phase,
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while increasing the strength of the substrate potential leads
to a phase coexistence of a S;(AB) lattice and an equimolar
binary mixture. This result opens up another experimental
pathway to grow defect-free square lattice structures. At low
number densities, the resulting modulated liquid exhibits in-
teresting structural properties. It is modulated only in the
component interacting with the external field, while the other
component shows signatures of an isotropic liquid. At the
same time, an induced structural crossover is observed in the
asymptotic behavior of both total correlation functions. The
decoupled behavior of the components is in particular pal-
pable in the fissuring regime, where, in contrast to the mono-
disperse LIM scenario, a decoupled melting of the sublattice
of the smaller component perpendicular to the minima of the
substrate potential occurs. Our results visualize nicely the
competition between entropy maximization and energy mini-
mization in one of the important model systems for statistical
mechanics, the hard-disk system.
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